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– Discrete selection dynamics
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Background: population adaptive evolution

Darwin (1809-1882) ’On the origin of species’ (1859)

Motivation. Analyze self-contained mathematical models for Darwins mechanism at the
population scale using only the

Ingredients.

I Population multiplication with heredity
I Natural selection:

- individuals own a phenotypical trait: ability to use the environment.

- Because of competition, the individuals that are the most preforment are selected.
I Mutations can modify the trait from parents to off-springs.
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A direct selection model

We consider a structured population model

∂t f (t , x) = f (t , x)R, t > 0, x ∈ X .

I Population structured by a continuous trait variable x ∈ X
I Reproduction (or fitness) R includes both growth a and competition (b > 0):

R = a(x)−
∫

X
b(x , y)f (t , y)dy .

I The competition b > 0 means that the individual with trait y only has a negative
effect on the one with trait x , therefore leading to selection!

f →
n∑

j=1

ρjδ(x − xj )?

I see Desvillettes, Gyllenberg, Jabin, Mischler, Perthame, Raoul, ...
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Selection or no selection

As an example, we consider

a(x) = G(x , σ1), b(x , y) = G(x − y , σ2),

where

G(x , σ) =
1

√
2πσ

e−
x2
2σ .

I For σ1 < σ2, the Dirac mass is a stable steady state.

I One can verify that for σ1 > σ2 there is a smooth steady state which is given by

feq = G(x , σ), σ = σ1 − σ2.
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Selection or no selection
The first row σ1 = 0.01 < σ2 = 0.05; the second row: σ1 = 0.05 > σ2 = 0.01.
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Branching

We test initial data of delta-like function with

a(x) = A− x2, b(x , y) =
1

1 + (x − y)2
.

(1) branching into two subspecies for A = 1.5.
(2) A = 2.5, branching into two subspecies and then a new trait appears in the middle.

7 / 36



Model description

∂t f (t , x) = f (t , x)R, t > 0, x ∈ X .

I Wellposedness in C([0,∞); L1(X)) is known for f0 ∈ L1(X), provided

a ∈ L∞(X), |{x ; a(x) > 0}| 6= 0;

b ∈ L∞(X × X), inf
x,x′∈X

b(x , x ′) > 0.

Desvillettes L, Jabin PE, Mischler S, Raoul G (2008)
I The model is interesting from the point of view of large-time behavior.

Natural questions appear, such as

– does the population really converge to an equilibrium?

– Is this equilibrium an evolutionarily stable strategy or distribution (ESS or ESD)?

– Does this limit depend on the initial population distribution?
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Evolutionary Stable Distribution (ESD)

I Solutions are expected to converge toward the stationary states ...{
f̃ (x)| f̃ (x)

(
a(x)−

∫
X

b(x , y)f̃ (y)dy
)

= 0
}

I However, there are many stationary states!

A special class of stationary states features a particular sign property characterized by
the ESD:

∀x ∈ suppf̃ , R = 0,

∀x ∈ X , R ≤ 0.

Jabin and Raoul (JMB 2011)
I Existence of ESD is known only for some a and b (Raoul 2009)
I In general case, the ESD is not necessarily unique!
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Model parameters

The basic assumptions for some existing results:

(i)a ∈ L∞(X), |{x ; a(x) > 0}| 6= 0,

(ii)b ∈ L∞(X × X), inf
x,x′∈X

b(x , x ′) > 0.

The uniqueness of the ESD is ensured if

∀g ∈ L1(X)\{0},
∫ ∫

b(x , y)g(x)g(y)dxdy > 0.

Convergence to ESD (when time becomes large) toward a singular ESD is rather
complex.

Partial results under additional symmetry assumption on b, say

b(x , y) = b(y , x).

Jabin and Raoul (JMB2011)
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Relative entropy

The proof of global convergence to the ESD relies on a Lyapunov functional of the form

F (t) =

∫
X

[
f̃ (x) log

f̃ (x)

f (t , x)
+ f (t , x)− f̃ (x)

]
dx ,

which is dissipating in time and serves as a relative entropy.

The obtained convergence rate (with no selection) is

‖f (t , ·)− f̃ (·)‖b = O
(

ln t
t

)
,

where

‖g‖b =

(∫ ∫
b(x , y)g(x)g(y)dxdy

)1/2
.
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Semi-discrete scheme

Let fj (t) denote the approximation of cell averages

fj (t) ∼
1
h

∫
Ij

f (t , x) dx ,

then we have the following semi-discrete scheme

d
dt

fj = fj

āj − h
N∑

i=1

b̄ji fi

 , j = 1, · · · ,N, (1)

where
āj =

1
h

∫
Ij

a(x)dx , b̄ji =
1
h2

∫
Ii

∫
Ij

b(x , y)dxdy .

The basic assumptions can be carried over to the discrete level:

|āj | ≤ ‖a‖L∞ , {1 ≤ j ≤ N, āj > 0} 6= ∅;

0 ≤ b̄ji ≤ ‖b‖L∞ and b̄ji = b̄ij , for 1 ≤ i, j ≤ N;

N∑
j=1

N∑
i=1

b̄ji gi gj > 0 for any gj such that
N∑

j=1

|gj |2 6= 0.
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Discrete ESD

I (Discrete ESD) For initial data fj (0) > 0 for all j = 1, 2, · · · ,N, the corresponding
discrete ESD f̃ = {f̃j} (still called ESD) may be defined as

∀j ∈ {1 ≤ i ≤ N, f̃i 6= 0}, Rj [̃f ] := āj − h
N∑

i=1

b̄ji f̃i = 0,

∀j ∈ {1 ≤ i ≤ N, f̃i = 0}, āj − h
N∑

i=1

b̄ji f̃i ≤ 0.

This ESD is shown to be unique!
I Questions:

- Can we come up with an independent solver to produce the discrete ESD?

- Does the numerical scheme preserve: positivity and the relative entropy
dissipation law?

- Does the numerical solution converge toward the discrete ESD?

- What are the time-asymptotic convergence rates?
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How to generate ESD?

We prove that finding the ESD is equivalent to solving the following problem

min
f∈RN

H, (2a)

subject to f ∈ S = {f ≥ 0}, (2b)

where

H(f ) =
f TBf

2
− aTf ,

with f = (f1, f2, · · · , fN )T, B = (b̄ij ), and a = (ā1, ā2, · · · , āN )T/h.
I B is positive definite, symmetric, hence problem (2) has a unique solution.
I A good quadratic programing algorithm can be used to produce the ESD!
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Proven properties of the semi-discrete scheme

We define the discrete entropy functional as follows

F =
N∑

j=1

(
f̃j log

(
f̃j
fj

)
+ fj − f̃j

)
h.

Theorem
Let fj (t) be the numerical solution to the semi-discrete scheme. Then
(i) If fj (0) > 0 for every 1 ≤ j ≤ N, then fj (t) > 0 for any t > 0;
(ii) F is non-increasing in time. Moreover,

dF
dt
≤ −h2

N∑
j=1

N∑
i=1

b̄ji

(
fi − f̃i

)(
fj − f̃j

)
≤ 0.
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Positivity and entropy satisfying property

f n+1
j − f n

j

∆t
= f n+1

j (āj − h
N∑

i=1

b̄ji f n
i ) (3)

Theorem
Assume F 0 <∞, and let f n

j be the numerical solution to the fully-discrete scheme (3)
with time step satisfying

∆t ≤
λmin

4λmax

[
‖a‖L∞ + ‖b‖L∞‖f̃‖1 + λmaxS(F 0)

] ,
where S is a monotone function. Then,
(i) f n+1

j = 0 for f n
j = 0, and f n+1

j > 0 for f n
j > 0 for any n ∈ N;

(ii) F n is a decreasing sequence in n. Moreover,

F n+1 − F n ≤ −
1
2

∆t‖f n − f̃‖2
b.

Note: F n =
N∑

j=1

(
f̃j log

(
f̃j
f n
j

)
+ f n

j − f̃j

)
h. λmin(λmax) denotes the smallest (largest)

eigenvalue of B = (b̄ji )N×N .
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Convergence rates

I A strict ESD: if it also satisfies the following strict sign condition,

Rj [̃f ] < 0 for j ∈ {i : f̃i = 0}.

I The strict ESD is both linearly and non linearly stable, with perturbations decaying
to zero exponentially in time.

I In order to quantify the exponential decay of the perturbations, we use the
following notation,

I = {j | f̃j = 0 and Rj < 0}, Ic = {j, 1 ≤ j ≤ N} − I,

and
s = min

j∈I
(−Rj [̃f ]) > 0, fm = min

j∈Ic
f̃j > 0.

µ = hfmλmin, r = min{s, µ}
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Convergence rates

Theorem
Let fj (t) be the solution to the semi-discrete scheme, associated with the strict ESD,
then there exists δ∗ > 0 such that for any δ ∈ (0, δ∗) if

‖f (0)− f̃‖2 ≤ δ,

then
‖f (t)− f̃‖p ≤ C(1 + t)ξe−rt , ξ = 1{s=µ},

where 1 ≤ p ≤ 2,

δ∗ =
α2 min{1,

√
fm}√

2 max{1, α}
, α =

√
r

‖b‖L∞
+
‖f̃‖1

2
−

√
‖f̃‖1

2
,

and C may depend on the parameters and the norms of the initial data but not explicitly
on N or h.
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Convergence rates

Another objective is to establish an algebraic convergence rate but with parameters
uniform in the mesh size, thus extending the rates known at the continuous limit.

Theorem
Let f n

j be the numerical solution generated from fully discrete scheme with positive

initial data f 0
j > 0 for all j = 1, · · · ,N, with f̃ = {f̃j} as its associated ESD. If

F 0 :=
N∑

j=1

(
f̃j log

(
f̃j
f 0
j

)
+ f 0

j − f̃j

)
h < +∞,

then

‖f n − f̃‖2
b ≤

2F 0

n∆t
,

provided that ∆t is suitably small.
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Conclusion I

I Rich dynamic behavior in discrete models.
I Convergence rates:

– For the strict discrete ESD, we establish the exponential convergence rate of
numerical solutions towards such a strict ESD. However, the convergence rate is
typically mesh dependent, as a similar result is not expected for the continuous
model.

– For general discrete ESD, we prove that numerical solutions of the fully discrete
scheme converge towards the discrete ESD at a rate 1/n, which is faster than the
rate O(logt/t) obtained for the continuous model

I Open questions:

- Characterize (a, b) that generate Dirac concentrations

- How to connect operator positivity
∫

b(x , y)n(x)n(y)dxdy ≥ 0 to scaling limits.
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Models with mutation

Off-springs undergo mutations that change slightly the trait. Two models are

∂t f (t , x) = f (t , x)R + ∆f .

∂t f (t , x) = f (t , x)R + µ

(∫
X

f (t , y)M(x , y)dy − f (t , x)

)
.

Depending on the scales of mutations, both models can de derived from
I Stochastic models, Individual Based Models

- N individuals,

- rescale mutation, birth, death rates

- U. Dieckmann- R. Law, R. Ferriere

- N. Champagnat, S. Meleard
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A special case

When b ≡ 1, the competition is uniform with same strength. The model becomes

∂t f (t , x) = f (t , x)R(x , ρ(t)) + ∆f (t , x),

R = a(x)− ρ(t), ρ =

∫
f (t , x)dx .

This special model was well studied.

Theorem (B. Perthame, et al) Let f be the solution of

∂t f (t , x) = f (t , x)R(x , ρ(t))

Suppose X = R, Rρ < 0 and R(x , ρmax ) < 0, ∀x . Then,

ρ(t)→ ρ∞, as t →∞,
lim

t→∞
f (t , x)→ ρ∞δ(x = x∞), (Competitive Exclusion Principle)

and minρ maxx R(x , ρ) = 0 = R(x∞, ρ∞) (pessimism principle)

However, when b 6= const , the problem is much more challenging!
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Asymptotic approach

We assume that mutations are RARE and introduce a scale ε for small mutations, so
that

ε∂t f (t , x) = f (t , x)R(x , ρ(t)) + ε2∆f (t , x).

Theorem (B. Perthame, et al) Suppose X = R, Rρ < 0. Then, as ε→ 0, we have

f (t , x)→ ρ̄(t)δ(x = x̄(t)), ρ→ ρ̄ =

∫
X

f (t , x)dx ,

and the ’fittest’ trait x̄(t) is characterised by the Eikonal equation with constraints

∂tφ(t , x) = R(x , ρ̄) + |∇xφ(t , x)|2

max
x
φ(t , x) = 0 = φ(t , x̄(t)).

I This is not far from Fisher/KPP equation for invasion fronts/chemical reaction:

ε∂t f (t , x) = f (t , x)(1− f (t , x)) + ε2∆f (t , x).

I Tools: WKB approach, level set, geometric motion.
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A new model

There are also other models featuring balance between evolutionary forces.
I We are concerned with the problem governed by

∂t f (t , x)= ∆f (t , x) +
1
2

f (t , x)

(
a(x)−

∫
X

b(x , y)f 2(t , y)dy
)
, for t > 0, x ∈ X ,

(4a)

f (0, x) = f0(x) ≥ 0, x ∈ X , (4b)

∂f
∂ν

= 0, x ∈ ∂X , (4c)

where f (t , x) denotes the density of individuals with trait x , X is a subdomain of
Rd , ν is the unit outward normal at a point x on the boundary ∂X .

I The nonlinear competition effect does appear in the model for fish species:

∂t f (t , x) =
1
2

f (t , x)

(
a(x)−

∫
X

b(x , y)(f (t , y)− d(x , y))2dy
)
.

K. Shirakihara, S. Tanaka (1978)
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Gradient flow structure

I The model can be expressed as

∂t f = −
1
2
δF
δf

where the corresponding energy functional is

F [f ] =
1
4

∫ ∫
b(x , y)f 2(t , x)f 2(t , y)dxdy −

1
2

∫
a(x)f 2(t , x)dx +

∫
|∇x f (t , x)|2dx

so that the energy dissipation law d
dt F [f ] = −2

∫
|∂t f |2dx ≤ 0 holds for all t > 0,

at least for classical solutions.
I Under the transformation u = f 2, the resulting equation becomes

∂t u(t , x) = ∆u −
|∇u|2

2u
+ u(t , x)

(
a(x)−

∫
X

b(x , y)u(t , y)dy
)
.
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Issues and questions

I Numerical approximation to capture the time-dynamics (w/ Wenli Cai, 2016)
I Theory for the continuous model (w/ P.E. Jabin)

– Well-posedness in C([0,∞); L2(X)) can be established for f0 ∈ L2(X).

– Other questions

a does the population converge to a nontrivial equilibrium?

b Is this equilibrium globally stable?

c Does this limit depend on the initial population distribution?
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Basic assumptions

In order to analyze the solution behavior at large times, we make the following
assumptions:

a ∈ L∞(X), |{x ; a(x) > 0}| 6= 0; (5a)

b ∈ L∞(X × X), bm = inf
x,x′∈X

b(x , x ′) > 0. (5b)

b(x , y) = b(y , x), ∀g ∈ L1(X)\{0},
∫ ∫

b(x , y)g(x)g(y)dxdy > 0. (5c)

One can check that b defines then a scalar product over L1(X),

〈g, h〉b =

∫ ∫
b(x , y)g(x)h(y)dxdy

with corresponding norm

‖g‖b =

(∫ ∫
b(x , y)g(x)g(y)dxdy

)1/2
.

In what follows we also use the notation

H[h] =
1
2

h
(

a−
∫

b(x , y)h2(y)dy
)
.
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Well-posedness

Existence and uniqueness of the solution can be obtained without much effort.

Theorem
Let f0 ∈ L2(X), and both a and b satisfy the first two assumptions of (5). Then (4)
admits a global weak solution

f ∈ L∞(R+; L2(X)).

Moreover, we have
(a) ‖f‖ := supt>0 ‖f (t , ·)‖L2(X) ≤ M, (t , x) ∈ R+ × X .

(b) f is stable and depends continuously on f0 in the following sense: if f̃ is another
solution with initial data f̃0, then for every t > 0,∫

|f − f̃ |2dx ≤ eλt
∫
|f0 − f̃0|2dx ,

where λ depends only on a, b and ‖f0‖.
The proof of this result is classical: (i) the a priori estimate of ‖f‖; (ii) fixed point
argument in a ball within C([0,T ], L2(X)); (iii) extension to all time.
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Steady solutions

The steady problem:

∆g + H[g] = 0, x ∈ X ∂νg = 0, on ∂X . (6)

Theorem
There exists g ≥ 0 solution in the sense of distribution to (6). Moreover,
(i) If

∫
adx ≥ 0 or

∫
adx < 0 with λ1 < 1/2, then there exists a unique positive solution

such that 0 < gmin ≤ g ≤ gmax <∞ in X .
(ii) If

∫
adx < 0 with λ1 ≥ 1/2, there is no positive steady solution.

Remarks: If
∫

adx ≥ 0, the steady state is strictly positive. The case
∫

adx < 0 is less
obvious. Brown and Lin (1980) proved that there exists a unique positive λ1 and the
positive function ψ ∈ D(L1) such that

∫
aψ2dx > 0 and

λ1 =

∫
|∇xψ|2dx∫

aψ2dx
= inf

{∫
|∇x v |2dx∫

av2dx
: v ∈ D(L1) and

∫
av2dx > 0

}
, (7)

where D(L1) = {u ∈ H2(X) : ∂nu|∂X = 0} is the domain of the Laplace operator
L1u = −∆u.
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Steps in the proof

I Existence of the weak solution by a variational construction: The weak solution in
distributional sense is shown to be equivalent to the nonzero critical point of the
functional

F [w ] =

∫ [
1
4

(b ∗ w2)w2 −
1
2

aw2
+ + |∇x w |2

]
dx , w+ = max(w , 0).

There exists g ∈ A := {g ∈ H1(X), g ≥ 0}, such that

F (g) = inf
w∈H1(X)

F [w ].

(i) If
∫

adx ≥ 0 or
∫

adx < 0 with λ1 < 1/2, then g is not identically 0;
(ii) If

∫
adx < 0 with λ1 ≥ 1/2, g ≡ 0.

I Regularity and positivity: elliptic theory and the standard Harnack inequality.
I Uniqueness is more interesting
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Proof of uniqueness
Let g1 and g2 be two positive solutions of (6), then using the positivity of b, third
assumption in (5)

0 ≤
∫ ∫

(g2
1 − g2

2 )(x)b(x , y)(g2
1 − g2

2 )(y)dydx

=

∫
(g1 − g2

2/g1)g1(x)

∫
b(x , y)g2

1 (y)dydx −
∫

(g2
1/g2 − g2)g2(x)

∫
b(x , y)g2

2 (y)dydx

=

∫
(g1 − g2

2/g1)(2∆g1(x) + a(x)g1(x))dx +

∫
(g2 − g2

1/g2)(2∆g2(x) + a(x)g2(x))dx

= 2
∫

(g1 − g2
2/g1) ∆g1(x) + 2

∫
(g2 − g2

1/g2) ∆g2(x),

by using the equation (6). Hence by integrating by part

0 ≤ −2
∫ (
∇x g1 −

2g1g2∇x g2 − g2
2∇x g1

g2
1

)
· ∇x g1dx

− 2
∫ (
∇x g2 −

2g1g2∇x g1 − g2
1∇x g2

g2
2

)
· ∇x g2dx

= −2
∫ (∣∣∣∣∇x g1 −

g1

g2
∇x g2

∣∣∣∣2 +

∣∣∣∣∇x g2 −
g2

g1
∇x g1

∣∣∣∣2
)

dx ≤ 0.

As a conclusion g2
1 = g2

2 , leading to g1 = g2.
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Main result

We can show the convergence of f (t , ·) towards g:

Theorem
Assume both a and b satisfy (5). Consider any non-negative f 0 ∈ L1(X) ∩ L∞(X).
Then the corresponding solution f (t , ·) of (4) is such that

d
dt

F [f (t , ·)] < 0 as long as f is not a steady solution. (8)

As a consequence
lim

t→∞
‖f (t , ·)− g(·)‖L2(X) = 0. (9)

And moreover, there exists C depending on initial data f0 and g ≥ 0 such that∫
|f (t , x)− g(x)|2dx ≤ Ce−rt ∀t > 0,

for
∫

adx ≥ 0 or
∫

adx < 0 with λ1 6= 1
2 , where of course g = 0 if λ1 > 1/2.

For
∫

adx < 0 and λ1 = 1
2 ,∫
|f (t , x)|2dx ≤

C
1 + t

∀t > 0.
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Proof of convergence

I Since F is non-increasing, it only remains to show that for some t0 ≥ 0, if
∂t f (t0, x) ≡ 0 for all x ∈ X , then ∂t f (t , x) ≡ 0 for all x ∈ X and t ≥ 0.

I By uniqueness we have f (t , x) = f (t0, x) for all t > t0.
I For 0 ≤ t ≤ t0, we prove by a contradiction argument based on a key quantity

Λ(t) =

∫
X |∇x w |2dx∫
|w |2dx

with w = f (t , x)− f (t0, x). Key estimates are

– On one hand
d
dt

Λ(t) ≤
1
2
λ2, λ :=

1
2

(‖a‖∞ + 3‖b‖∞M2).

– On the other hand,

d
dt

(
log

1∫
w2dx

)
= −

2∫
w2dx

∫
w∂t wdx

≤ 2Λ(t) + 2λ.

33 / 36



Exponential convergence
In the case g > 0, we introduce the auxiliary functional

G =

∫ [
f 2 − g2

2
− g2 log

(
f
g

)]
dx ,

which is bounded from below

G ≥
∫ [

f 2 − g2

2
− g2

(
f
g
− 1
)]

dx =
1
2

∫
(f − g)2dx .

A direct calculation gives

d
dt

G ≤ −D(f , g),

where

D(f , g) =

∫
g2
∣∣∣∣∇x

(
f
g

)∣∣∣∣2 dx +
1
2

∫ ∫
(f 2 − g2)(x)b(x , y)(f 2 − g2)(y)dydx .

The key is to show that that there exists µ > 0 such that

D(f , g) ≥ µ‖f/g − 1‖2
L2 . (10)

which gives
d
dt

G ≤ −µ
∫ (

f
g
− 1
)2

dx ≤ −
2µ

g2
max

G.

By Gronwall lemma

‖f (t , ·)− g(·)‖L2 ≤
√

2G(t) ≤
√

2G(0)

(
−

µ

g2
max

t
)
.
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A new functional inequality

Due to the Poincare inequality it suffices to find µ independent of c ≥ 0 such that

I := CX g2
min

∫ ∣∣∣∣ f
g
− c
∣∣∣∣2 dx +

1
2
‖f 2 − g2‖2

b ≥ µ‖
f
g
− 1‖2

L2 .

I find ε so that
I ≥

1
2

CX g2
min ‖f/g − c‖2 + ε (c2 − 1)2 ‖g‖2

b.

I For any η > 0 ∫ ∣∣∣∣ f
g
− c
∣∣∣∣2 dx ≥ η

∫ ∣∣∣∣ f
g
− 1
∣∣∣∣2 dx −

η|X |
1− η

|c − 1|2.

I Together

I ≥
η

2
CX g2

min

∫ ∣∣∣∣ f
g
− 1
∣∣∣∣2 dx + |c − 1|2

(
ε (c + 1)2 ‖g‖2

b −
η|X |
1− η

)
.
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Conclusion II

I The self-contained population models with three simple ingredients:

- growth and death: trait dependent

- limited resources: selection through competition

- mutations

is able to express selection and branching.
I Open questions

- Does the entropy method hold in the case with mutation?

- For the new model, how to characterize a more explicitly that generate positive
concentrations

- Whether similar results hold true for corresponding discrete models.
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