On selection dynamics with nonlocal competition

Hailiang Liu
Department of Mathematics lowa State University
With: Wenli Cai (Tsinghua University)
Pierre Jabin (University of Maryland)
Kinetic Descriptions of Chemical and Biological Systems
Ames IA, March 23-25, 2017

- A population model without mutation (linear competition)
- Relative entropy
- Discrete selection dynamics
- A population model with mutation (nonlinear competition)
- Gradient flow structure
- H. Liu, Wenli Cai and Ning Su, SIAM Journal on Numerical Analysis, 53 (2015), 1393-1417.
- Wenli Cai, Pierre-Emmanuel Jabin, and H. Liu, Math. Models Methods Appl. Sci. 25(2015), 1589-.
- H. Liu, Wenli Cai, Mathematical Modeling and Numerical Analysis (M2AN), 2016.
- Pierre-Emmanuel Jabin, and H. Liu, Nonlinearity, 2017.

Background: population adaptive evolution

Darwin (1809-1882) 'On the origin of species' (1859)

Motivation. Analyze self-contained mathematical models for Darwins mechanism at the population scale using only the

Ingredients.

- Population multiplication with heredity
- Natural selection:
- individuals own a phenotypical trait: ability to use the environment.
- Because of competition, the individuals that are the most preforment are selected.
- Mutations can modify the trait from parents to off-springs.

A direct selection model

We consider a structured population model

$$
\partial_{t} f(t, x)=f(t, x) R, \quad t>0, x \in X
$$

- Population structured by a continuous trait variable $x \in X$
- Reproduction (or fitness) R includes both growth a and competition ($b>0$):

$$
R=a(x)-\int_{X} b(x, y) f(t, y) d y
$$

- The competition $b>0$ means that the individual with trait y only has a negative effect on the one with trait x, therefore leading to selection!

$$
f \rightarrow \sum_{j=1}^{n} \rho_{j} \delta\left(x-x_{j}\right) ?
$$

- see Desvillettes, Gyllenberg, Jabin, Mischler, Perthame, Raoul, ...

Selection or no selection

As an example, we consider

$$
a(x)=G\left(x, \sigma_{1}\right), \quad b(x, y)=G\left(x-y, \sigma_{2}\right)
$$

where

$$
G(x, \sigma)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{x^{2}}{2 \sigma}}
$$

- For $\sigma_{1}<\sigma_{2}$, the Dirac mass is a stable steady state.
- One can verify that for $\sigma_{1}>\sigma_{2}$ there is a smooth steady state which is given by

$$
f_{e q}=G(x, \sigma), \quad \sigma=\sigma_{1}-\sigma_{2} .
$$

Selection or no selection

The first row $\sigma_{1}=0.01<\sigma_{2}=0.05$; the second row: $\sigma_{1}=0.05>\sigma_{2}=0.01$.

Branching

We test initial data of delta-like function with

$$
a(x)=A-x^{2}, \quad b(x, y)=\frac{1}{1+(x-y)^{2}}
$$

(1) branching into two subspecies for $A=1.5$.
(2) $A=2.5$, branching into two subspecies and then a new trait appears in the middle.

Model description

$$
\partial_{t} f(t, x)=f(t, x) R, \quad t>0, x \in X
$$

- Wellposedness in $C\left([0, \infty) ; L^{1}(X)\right)$ is known for $f_{0} \in L^{1}(X)$, provided

$$
\begin{aligned}
& a \in L^{\infty}(X), \quad|\{x ; \quad a(x)>0\}| \neq 0 \\
& b \in L^{\infty}(X \times X), \quad \inf _{x, x^{\prime} \in X} b\left(x, x^{\prime}\right)>0
\end{aligned}
$$

Desvillettes L, Jabin PE, Mischler S, Raoul G (2008)

- The model is interesting from the point of view of large-time behavior. Natural questions appear, such as
- does the population really converge to an equilibrium?
- Is this equilibrium an evolutionarily stable strategy or distribution (ESS or ESD)?
- Does this limit depend on the initial population distribution?

Evolutionary Stable Distribution (ESD)

- Solutions are expected to converge toward the stationary states ...

$$
\left\{\tilde{f}(x) \mid \tilde{f}(x)\left(a(x)-\int_{X} b(x, y) \tilde{f}(y) d y\right)=0\right\}
$$

- However, there are many stationary states!

A special class of stationary states features a particular sign property characterized by the ESD:

$$
\begin{aligned}
& \forall x \in \operatorname{supp} \tilde{f}, R=0 \\
& \forall x \in X, R \leq 0
\end{aligned}
$$

Jabin and Raoul (JMB 2011)

- Existence of ESD is known only for some a and b (Raoul 2009)
- In general case, the ESD is not necessarily unique!

Model parameters

The basic assumptions for some existing results:

$$
\begin{aligned}
& \text { (i) } a \in L^{\infty}(X), \quad|\{x ; \quad a(x)>0\}| \neq 0 \\
& \text { (ii) } b \in L^{\infty}(X \times X), \quad \inf _{x, x^{\prime} \in X} b\left(x, x^{\prime}\right)>0
\end{aligned}
$$

The uniqueness of the ESD is ensured if

$$
\forall g \in L^{1}(X) \backslash\{0\}, \quad \iint b(x, y) g(x) g(y) d x d y>0
$$

Convergence to ESD (when time becomes large) toward a singular ESD is rather complex.

Partial results under additional symmetry assumption on b, say

$$
b(x, y)=b(y, x)
$$

Jabin and Raoul (JMB2011)

Relative entropy

The proof of global convergence to the ESD relies on a Lyapunov functional of the form

$$
F(t)=\int_{X}\left[\tilde{f}(x) \log \frac{\tilde{f}(x)}{f(t, x)}+f(t, x)-\tilde{f}(x)\right] d x
$$

which is dissipating in time and serves as a relative entropy.

The obtained convergence rate (with no selection) is

$$
\|f(t, \cdot)-\tilde{f}(\cdot)\|_{b}=O\left(\frac{\ln t}{t}\right)
$$

where

$$
\|g\|_{b}=\left(\iint b(x, y) g(x) g(y) d x d y\right)^{1 / 2}
$$

Semi-discrete scheme

Let $f_{j}(t)$ denote the approximation of cell averages

$$
f_{j}(t) \sim \frac{1}{h} \int_{I_{j}} f(t, x) d x
$$

then we have the following semi-discrete scheme

$$
\begin{equation*}
\frac{d}{d t} f_{j}=f_{j}\left(\bar{a}_{j}-h \sum_{i=1}^{N} \bar{b}_{j i} f_{i}\right), \quad j=1, \cdots, N, \tag{1}
\end{equation*}
$$

where

$$
\bar{a}_{j}=\frac{1}{h} \int_{l_{j}} a(x) d x, \quad \bar{b}_{j i}=\frac{1}{h^{2}} \int_{l_{i}} \int_{l_{j}} b(x, y) d x d y
$$

The basic assumptions can be carried over to the discrete level:

$$
\begin{gathered}
\left|\bar{a}_{j}\right| \leq\|a\|_{L \infty}, \quad\left\{1 \leq j \leq N, \bar{a}_{j}>0\right\} \neq \emptyset ; \\
0 \leq \bar{b}_{j i} \leq\|b\|_{L \infty} \text { and } \bar{b}_{j i}=\bar{b}_{i j}, \text { for } 1 \leq i, j \leq N ; \\
\sum_{j=1}^{N} \sum_{i=1}^{N} \bar{b}_{j i} g_{i} g_{j}>0 \text { for any } g_{j} \text { such that } \sum_{j=1}^{N}\left|g_{j}\right|^{2} \neq 0 .
\end{gathered}
$$

Discrete ESD

- (Discrete ESD) For initial data $f_{j}(0)>0$ for all $j=1,2, \cdots, N$, the corresponding discrete ESD $\tilde{f}=\left\{\tilde{f}_{j}\right\}$ (still called ESD) may be defined as

$$
\begin{aligned}
& \forall j \in\left\{1 \leq i \leq N, \tilde{f}_{i} \neq 0\right\}, \quad R_{j}[\tilde{f}]:=\bar{a}_{j}-h \sum_{i=1}^{N} \bar{b}_{j i} \tilde{f}_{i}=0, \\
& \forall j \in\left\{1 \leq i \leq N, \tilde{f}_{i}=0\right\}, \quad \bar{a}_{j}-h \sum_{i=1}^{N} \bar{b}_{j i} \tilde{f}_{i} \leq 0 .
\end{aligned}
$$

This ESD is shown to be unique!

- Questions:
- Can we come up with an independent solver to produce the discrete ESD?
- Does the numerical scheme preserve: positivity and the relative entropy dissipation law?
- Does the numerical solution converge toward the discrete ESD?
- What are the time-asymptotic convergence rates?

How to generate ESD?

We prove that finding the ESD is equivalent to solving the following problem

$$
\begin{align*}
& \min _{f \in \mathbb{R}^{N}} H, \tag{2a}\\
& \text { subject to } \quad f \in S=\{f \geq 0\}, \tag{2b}
\end{align*}
$$

where

$$
H(f)=\frac{f^{\mathrm{T}} B f}{2}-a^{\mathrm{T}} f
$$

with $f=\left(f_{1}, f_{2}, \cdots, f_{N}\right)^{\mathrm{T}}, B=\left(\bar{b}_{i j}\right)$, and $a=\left(\bar{a}_{1}, \bar{a}_{2}, \cdots, \bar{a}_{N}\right)^{\mathrm{T}} / h$.

- B is positive definite, symmetric, hence problem (2) has a unique solution.
- A good quadratic programing algorithm can be used to produce the ESD!

Proven properties of the semi-discrete scheme

We define the discrete entropy functional as follows

$$
F=\sum_{j=1}^{N}\left(\tilde{f}_{j} \log \left(\frac{\tilde{f}_{j}}{f_{j}}\right)+f_{j}-\tilde{f}_{j}\right) h .
$$

Theorem
Let $f_{j}(t)$ be the numerical solution to the semi-discrete scheme. Then
(i) If $f_{j}(0)>0$ for every $1 \leq j \leq N$, then $f_{j}(t)>0$ for any $t>0$;
(ii) F is non-increasing in time. Moreover,

$$
\frac{d F}{d t} \leq-h^{2} \sum_{j=1}^{N} \sum_{i=1}^{N} \bar{b}_{j i}\left(f_{i}-\tilde{f}_{i}\right)\left(f_{j}-\tilde{f}_{j}\right) \leq 0
$$

Positivity and entropy satisfying property

$$
\begin{equation*}
\frac{f_{j}^{n+1}-f_{j}^{n}}{\Delta t}=f_{j}^{n+1}\left(\bar{a}_{j}-h \sum_{i=1}^{N} \bar{b}_{j i} f_{i}^{n}\right) \tag{3}
\end{equation*}
$$

Theorem
Assume $F^{0}<\infty$, and let f_{j}^{n} be the numerical solution to the fully-discrete scheme (3) with time step satisfying

$$
\Delta t \leq \frac{\lambda_{\min }}{4 \lambda_{\max }\left[\|a\|_{L \infty}+\|b\|_{L \infty}\|\tilde{f}\|_{1}+\lambda_{\max } S\left(F^{0}\right)\right]}
$$

where S is a monotone function. Then,
(i) $f_{j}^{n+1}=0$ for $f_{j}^{n}=0$, and $f_{j}^{n+1}>0$ for $f_{j}^{n}>0$ for any $n \in \mathbb{N}$;
(ii) F^{n} is a decreasing sequence in n. Moreover,

$$
F^{n+1}-F^{n} \leq-\frac{1}{2} \Delta t\left\|f^{n}-\tilde{f}\right\|_{b}^{2}
$$

Note: $F^{n}=\sum_{j=1}^{N}\left(\tilde{f}_{j} \log \left(\frac{\tilde{f}_{j}}{f_{j}^{n}}\right)+f_{j}^{n}-\tilde{f}_{j}\right) h . \lambda_{\min }\left(\lambda_{\max }\right)$ denotes the smallest (largest) eigenvalue of $B=\left(\bar{b}_{j i}\right)_{N \times N}$.

Convergence rates

- A strict ESD: if it also satisfies the following strict sign condition,

$$
R_{j}[\tilde{f}]<0 \quad \text { for } j \in\left\{i: \tilde{f}_{i}=0\right\} .
$$

- The strict ESD is both linearly and non linearly stable, with perturbations decaying to zero exponentially in time.
- In order to quantify the exponential decay of the perturbations, we use the following notation,

$$
I=\left\{j \mid \tilde{f}_{j}=0 \text { and } R_{j}<0\right\}, \quad I^{c}=\{j, 1 \leq j \leq N\}-I,
$$

and

$$
\begin{gathered}
s=\min _{j \in I}\left(-R_{j}[\tilde{f}]\right)>0, \quad f_{m}=\min _{j \in I C} \tilde{f}_{j}>0 \\
\mu=h f_{m} \lambda_{\min }, \quad r=\min \{s, \mu\}
\end{gathered}
$$

Convergence rates

Theorem
Let $f_{j}(t)$ be the solution to the semi-discrete scheme, associated with the strict ESD, then there exists $\delta^{*}>0$ such that for any $\delta \in\left(0, \delta^{*}\right)$ if

$$
\|f(0)-\tilde{f}\|_{2} \leq \delta,
$$

then

$$
\|f(t)-\tilde{f}\|_{p} \leq C(1+t)^{\xi} e^{-r t}, \quad \xi=1_{\{s=\mu\}}
$$

where $1 \leq p \leq 2$,

$$
\delta^{*}=\frac{\alpha^{2} \min \left\{1, \sqrt{f_{m}}\right\}}{\sqrt{2} \max \{1, \alpha\}}, \quad \alpha=\sqrt{\frac{r}{\|b\|_{L \infty}}+\frac{\|\tilde{f}\|_{1}}{2}}-\sqrt{\frac{\|\tilde{f}\|_{1}}{2}},
$$

and C may depend on the parameters and the norms of the initial data but not explicitly on N or h.

Convergence rates

Another objective is to establish an algebraic convergence rate but with parameters uniform in the mesh size, thus extending the rates known at the continuous limit.

Theorem

Let f_{j}^{n} be the numerical solution generated from fully discrete scheme with positive initial data $f_{j}^{0}>0$ for all $j=1, \cdots, N$, with $\tilde{f}=\left\{\tilde{f}_{j}\right\}$ as its associated ESD. If

$$
F^{0}:=\sum_{j=1}^{N}\left(\tilde{f}_{j} \log \left(\frac{\tilde{f}_{j}}{f_{j}^{0}}\right)+f_{j}^{0}-\tilde{f}_{j}\right) h<+\infty,
$$

then

$$
\left\|f^{n}-\tilde{f}\right\|_{b}^{2} \leq \frac{2 F^{0}}{n \Delta t}
$$

provided that Δt is suitably small.

Conclusion I

- Rich dynamic behavior in discrete models.
- Convergence rates:
- For the strict discrete ESD, we establish the exponential convergence rate of numerical solutions towards such a strict ESD. However, the convergence rate is typically mesh dependent, as a similar result is not expected for the continuous model.
- For general discrete ESD, we prove that numerical solutions of the fully discrete scheme converge towards the discrete ESD at a rate $1 / n$, which is faster than the rate $O(\log t / t)$ obtained for the continuous model
- Open questions:
- Characterize (a, b) that generate Dirac concentrations
- How to connect operator positivity $\int b(x, y) n(x) n(y) d x d y \geq 0$ to scaling limits.

Models with mutation

Off-springs undergo mutations that change slightly the trait. Two models are

$$
\begin{gathered}
\partial_{t} f(t, x)=f(t, x) R+\Delta f . \\
\partial_{t} f(t, x)=f(t, x) R+\mu\left(\int_{X} f(t, y) M(x, y) d y-f(t, x)\right) .
\end{gathered}
$$

Depending on the scales of mutations, both models can de derived from

- Stochastic models, Individual Based Models
- N individuals,
- rescale mutation, birth, death rates
- U. Dieckmann- R. Law, R. Ferriere
- N. Champagnat, S. Meleard

A special case

When $b \equiv 1$, the competition is uniform with same strength. The model becomes

$$
\begin{aligned}
& \partial_{t} f(t, x)=f(t, x) R(x, \rho(t))+\Delta f(t, x), \\
& R=a(x)-\rho(t), \quad \rho=\int f(t, x) d x
\end{aligned}
$$

This special model was well studied.

Theorem (B. Perthame, et al) Let f be the solution of

$$
\partial_{t} f(t, x)=f(t, x) R(x, \rho(t))
$$

Suppose $X=\mathbb{R}, R_{\rho}<0$ and $R\left(x, \rho_{\max }\right)<0, \forall x$. Then,

$$
\begin{aligned}
& \rho(t) \rightarrow \rho_{\infty}, \quad \text { as } t \rightarrow \infty, \\
& \lim _{t \rightarrow \infty} f(t, x) \rightarrow \rho_{\infty} \delta\left(x=x_{\infty}\right) \text {, (Competitive Exclusion Principle) }
\end{aligned}
$$

and $\min _{\rho} \max _{x} R(x, \rho)=0=R\left(x_{\infty}, \rho_{\infty}\right)$ (pessimism principle)

However, when $b \neq$ const, the problem is much more challenging!

Asymptotic approach

We assume that mutations are RARE and introduce a scale ϵ for small mutations, so that

$$
\epsilon \partial_{t} f(t, x)=f(t, x) R(x, \rho(t))+\epsilon^{2} \Delta f(t, x) .
$$

Theorem (B. Perthame, et al) Suppose $X=\mathbb{R}, R_{\rho}<0$. Then, as $\epsilon \rightarrow 0$, we have

$$
f(t, x) \rightarrow \bar{\rho}(t) \delta(x=\bar{x}(t)), \quad \rho \rightarrow \bar{\rho}=\int_{X} f(t, x) d x
$$

and the 'fittest' trait $\bar{x}(t)$ is characterised by the Eikonal equation with constraints

$$
\begin{aligned}
& \partial_{t} \phi(t, x)=R(x, \bar{\rho})+\left|\nabla_{x} \phi(t, x)\right|^{2} \\
& \max _{x} \phi(t, x)=0=\phi(t, \bar{x}(t)) .
\end{aligned}
$$

- This is not far from Fisher/KPP equation for invasion fronts/chemical reaction:

$$
\epsilon \partial_{t} f(t, x)=f(t, x)(1-f(t, x))+\epsilon^{2} \Delta f(t, x) .
$$

- Tools: WKB approach, level set, geometric motion.

A new model

There are also other models featuring balance between evolutionary forces.

- We are concerned with the problem governed by

$$
\begin{align*}
\partial_{t} f(t, x) & =\Delta f(t, x)+\frac{1}{2} f(t, x)\left(a(x)-\int_{X} b(x, y) f^{2}(t, y) d y\right), \text { for } t>0, x \in X \tag{4a}\\
f(0, x) & =f_{0}(x) \geq 0, \quad x \in X \tag{4b}\\
\frac{\partial f}{\partial \nu} & =0, \quad x \in \partial X \tag{4c}
\end{align*}
$$

where $f(t, x)$ denotes the density of individuals with trait x, X is a subdomain of \mathbb{R}^{d}, ν is the unit outward normal at a point x on the boundary ∂X.

- The nonlinear competition effect does appear in the model for fish species:

$$
\partial_{t} f(t, x)=\frac{1}{2} f(t, x)\left(a(x)-\int_{X} b(x, y)(f(t, y)-d(x, y))^{2} d y\right) .
$$

K. Shirakihara, S. Tanaka (1978)

Gradient flow structure

- The model can be expressed as

$$
\partial_{t} f=-\frac{1}{2} \frac{\delta F}{\delta f}
$$

where the corresponding energy functional is
$F[f]=\frac{1}{4} \iint b(x, y) f^{2}(t, x) f^{2}(t, y) d x d y-\frac{1}{2} \int a(x) f^{2}(t, x) d x+\int\left|\nabla_{x} f(t, x)\right|^{2} d x$
so that the energy dissipation law $\frac{d}{d t} F[f]=-2 \int\left|\partial_{t} f\right|^{2} d x \leq 0$ holds for all $t>0$, at least for classical solutions.

- Under the transformation $u=f^{2}$, the resulting equation becomes

$$
\partial_{t} u(t, x)=\Delta u-\frac{|\nabla u|^{2}}{2 u}+u(t, x)\left(a(x)-\int_{X} b(x, y) u(t, y) d y\right)
$$

Issues and questions

- Numerical approximation to capture the time-dynamics (w/ Wenli Cai, 2016)
- Theory for the continuous model (w/ P.E. Jabin)
- Well-posedness in $C\left([0, \infty) ; L^{2}(X)\right)$ can be established for $f_{0} \in L^{2}(X)$.
- Other questions
a does the population converge to a nontrivial equilibrium?
b Is this equilibrium globally stable?
c Does this limit depend on the initial population distribution?

Basic assumptions

In order to analyze the solution behavior at large times, we make the following assumptions:

$$
\begin{align*}
& a \in L^{\infty}(X), \quad|\{x ; \quad a(x)>0\}| \neq 0 \tag{5a}\\
& b \in L^{\infty}(X \times X), \quad b_{m}=\inf _{x, x^{\prime} \in X} b\left(x, x^{\prime}\right)>0 \tag{5b}\\
& b(x, y)=b(y, x), \forall g \in L^{1}(X) \backslash\{0\}, \quad \iint b(x, y) g(x) g(y) d x d y>0 \tag{5c}
\end{align*}
$$

One can check that b defines then a scalar product over $L^{1}(X)$,

$$
\langle g, h\rangle_{b}=\iint b(x, y) g(x) h(y) d x d y
$$

with corresponding norm

$$
\|g\|_{b}=\left(\iint b(x, y) g(x) g(y) d x d y\right)^{1 / 2}
$$

In what follows we also use the notation

$$
H[h]=\frac{1}{2} h\left(a-\int b(x, y) h^{2}(y) d y\right)
$$

Well-posedness

Existence and uniqueness of the solution can be obtained without much effort.

Theorem

Let $f_{0} \in L^{2}(X)$, and both a and b satisfy the first two assumptions of (5). Then (4) admits a global weak solution

$$
f \in L^{\infty}\left(\mathbb{R}^{+} ; L^{2}(X)\right)
$$

Moreover, we have
(a) $\|f\|:=\sup _{t>0}\|f(t, \cdot)\|_{L^{2}(X)} \leq M, \quad(t, x) \in \mathbb{R}^{+} \times X$.
(b) f is stable and depends continuously on f_{0} in the following sense: if \tilde{f} is another solution with initial data \tilde{f}_{0}, then for every $t>0$,

$$
\int|f-\tilde{f}|^{2} d x \leq e^{\lambda t} \int\left|f_{0}-\tilde{f}_{0}\right|^{2} d x
$$

where λ depends only on a, b and $\left\|f_{0}\right\|$.
The proof of this result is classical: (i) the a priori estimate of $\|f\|$; (ii) fixed point argument in a ball within $C\left([0, T], L^{2}(X)\right)$; (iii) extension to all time.

Steady solutions

The steady problem:

$$
\begin{equation*}
\Delta g+H[g]=0, \quad x \in X \quad \partial_{\nu} g=0, \quad \text { on } \partial X \tag{6}
\end{equation*}
$$

Theorem
There exists $g \geq 0$ solution in the sense of distribution to (6). Moreover,
(i) If $\int a d x \geq 0$ or $\int a d x<0$ with $\lambda_{1}<1 / 2$, then there exists a unique positive solution such that $0<g_{\min } \leq g \leq g_{\max }<\infty$ in X.
(ii) If \int adx <0 with $\lambda_{1} \geq 1 / 2$, there is no positive steady solution.

Remarks: If $\int a d x \geq 0$, the steady state is strictly positive. The case $\int a d x<0$ is less obvious. Brown and Lin (1980) proved that there exists a unique positive λ_{1} and the positive function $\psi \in D\left(L_{1}\right)$ such that $\int a \psi^{2} d x>0$ and

$$
\begin{equation*}
\lambda_{1}=\frac{\int\left|\nabla_{x} \psi\right|^{2} d x}{\int a \psi^{2} d x}=\inf \left\{\frac{\int\left|\nabla_{x} v\right|^{2} d x}{\int a v^{2} d x}: v \in D\left(L_{1}\right) \text { and } \int a v^{2} d x>0\right\} \tag{7}
\end{equation*}
$$

where $D\left(L_{1}\right)=\left\{u \in H^{2}(X):\left.\partial_{n} u\right|_{\partial X}=0\right\}$ is the domain of the Laplace operator $L_{1} u=-\Delta u$.

Steps in the proof

- Existence of the weak solution by a variational construction: The weak solution in distributional sense is shown to be equivalent to the nonzero critical point of the functional

$$
F[w]=\int\left[\frac{1}{4}\left(b * w^{2}\right) w^{2}-\frac{1}{2} a w_{+}^{2}+\left|\nabla_{x} w\right|^{2}\right] d x, \quad w_{+}=\max (w, 0)
$$

There exists $g \in A:=\left\{g \in H^{1}(X), g \geq 0\right\}$, such that

$$
F(g)=\inf _{w \in H^{1}(X)} F[w] .
$$

(i) If $\int a d x \geq 0$ or $\int a d x<0$ with $\lambda_{1}<1 / 2$, then g is not identically 0 ;
(ii) If $\int a d x<0$ with $\lambda_{1} \geq 1 / 2, g \equiv 0$.

- Regularity and positivity: elliptic theory and the standard Harnack inequality.
- Uniqueness is more interesting

Proof of uniqueness

Let g_{1} and g_{2} be two positive solutions of (6), then using the positivity of b, third assumption in (5)

$$
\begin{aligned}
0 & \leq \iint\left(g_{1}^{2}-g_{2}^{2}\right)(x) b(x, y)\left(g_{1}^{2}-g_{2}^{2}\right)(y) d y d x \\
& =\int\left(g_{1}-g_{2}^{2} / g_{1}\right) g_{1}(x) \int b(x, y) g_{1}^{2}(y) d y d x-\int\left(g_{1}^{2} / g_{2}-g_{2}\right) g_{2}(x) \int b(x, y) g_{2}^{2}(y) d y d x \\
& =\int\left(g_{1}-g_{2}^{2} / g_{1}\right)\left(2 \Delta g_{1}(x)+a(x) g_{1}(x)\right) d x+\int\left(g_{2}-g_{1}^{2} / g_{2}\right)\left(2 \Delta g_{2}(x)+a(x) g_{2}(x)\right) d x \\
& =2 \int\left(g_{1}-g_{2}^{2} / g_{1}\right) \Delta g_{1}(x)+2 \int\left(g_{2}-g_{1}^{2} / g_{2}\right) \Delta g_{2}(x)
\end{aligned}
$$

by using the equation (6). Hence by integrating by part

$$
\begin{aligned}
0 \leq & -2 \int\left(\nabla_{x} g_{1}-\frac{2 g_{1} g_{2} \nabla_{x} g_{2}-g_{2}^{2} \nabla_{x} g_{1}}{g_{1}^{2}}\right) \cdot \nabla_{x} g_{1} d x \\
& -2 \int\left(\nabla_{x} g_{2}-\frac{2 g_{1} g_{2} \nabla_{x} g_{1}-g_{1}^{2} \nabla_{x} g_{2}}{g_{2}^{2}}\right) \cdot \nabla_{x} g_{2} d x \\
= & -2 \int\left(\left|\nabla_{x} g_{1}-\frac{g_{1}}{g_{2}} \nabla_{x} g_{2}\right|^{2}+\left|\nabla_{x} g_{2}-\frac{g_{2}}{g_{1}} \nabla_{x} g_{1}\right|^{2}\right) d x \leq 0 .
\end{aligned}
$$

As a conclusion $g_{1}^{2}=g_{2}^{2}$, leading to $g_{1}=g_{2}$.

Main result

We can show the convergence of $f(t, \cdot)$ towards g :

Theorem

Assume both a and b satisfy (5). Consider any non-negative $f^{0} \in L^{1}(X) \cap L^{\infty}(X)$. Then the corresponding solution $f(t, \cdot)$ of (4) is such that

$$
\begin{equation*}
\frac{d}{d t} F[f(t, \cdot)]<0 \text { as long as } f \text { is not a steady solution. } \tag{8}
\end{equation*}
$$

As a consequence

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|f(t, \cdot)-g(\cdot)\|_{L^{2}(X)}=0 \tag{9}
\end{equation*}
$$

And moreover, there exists C depending on initial data f_{0} and $g \geq 0$ such that

$$
\int|f(t, x)-g(x)|^{2} d x \leq C e^{-r t} \quad \forall t>0
$$

for \int adx ≥ 0 or \int adx <0 with $\lambda_{1} \neq \frac{1}{2}$, where of course $g=0$ if $\lambda_{1}>1 / 2$.
For $\int a d x<0$ and $\lambda_{1}=\frac{1}{2}$,

$$
\int|f(t, x)|^{2} d x \leq \frac{C}{1+t} \quad \forall t>0
$$

Proof of convergence

- Since F is non-increasing, it only remains to show that for some $t_{0} \geq 0$, if $\partial_{t} f\left(t_{0}, x\right) \equiv 0$ for all $x \in X$, then $\partial_{t} f(t, x) \equiv 0$ for all $x \in X$ and $t \geq 0$.
- By uniqueness we have $f(t, x)=f\left(t_{0}, x\right)$ for all $t>t_{0}$.
- For $0 \leq t \leq t_{0}$, we prove by a contradiction argument based on a key quantity

$$
\Lambda(t)=\frac{\int_{X}\left|\nabla_{x} w\right|^{2} d x}{\int|w|^{2} d x}
$$

with $w=f(t, x)-f\left(t_{0}, x\right)$. Key estimates are

- On one hand

$$
\frac{d}{d t} \Lambda(t) \leq \frac{1}{2} \lambda^{2}, \quad \lambda:=\frac{1}{2}\left(\|a\|_{\infty}+3\|b\|_{\infty} M^{2}\right)
$$

- On the other hand,

$$
\begin{aligned}
\frac{d}{d t}\left(\log \frac{1}{\int w^{2} d x}\right) & =-\frac{2}{\int w^{2} d x} \int w \partial_{t} w d x \\
& \leq 2 \Lambda(t)+2 \lambda
\end{aligned}
$$

Exponential convergence

In the case $g>0$, we introduce the auxiliary functional

$$
G=\int\left[\frac{f^{2}-g^{2}}{2}-g^{2} \log \left(\frac{f}{g}\right)\right] d x
$$

which is bounded from below

$$
G \geq \int\left[\frac{f^{2}-g^{2}}{2}-g^{2}\left(\frac{f}{g}-1\right)\right] d x=\frac{1}{2} \int(f-g)^{2} d x
$$

A direct calculation gives

$$
\frac{d}{d t} G \leq-D(f, g)
$$

where

$$
D(f, g)=\int g^{2}\left|\nabla_{x}\left(\frac{f}{g}\right)\right|^{2} d x+\frac{1}{2} \iint\left(f^{2}-g^{2}\right)(x) b(x, y)\left(f^{2}-g^{2}\right)(y) d y d x
$$

The key is to show that that there exists $\mu>0$ such that

$$
\begin{equation*}
D(f, g) \geq \mu\|f / g-1\|_{L^{2}}^{2} \tag{10}
\end{equation*}
$$

which gives

$$
\frac{d}{d t} G \leq-\mu \int\left(\frac{f}{g}-1\right)^{2} d x \leq-\frac{2 \mu}{g_{\max }^{2}} G
$$

By Gronwall lemma

$$
\|f(t, \cdot)-g(\cdot)\|_{L^{2}} \leq \sqrt{2 G(t)} \leq \sqrt{2 G(0)}\left(-\frac{\mu}{g_{\max }^{2}} t\right)
$$

A new functional inequality

Due to the Poincare inequality it suffices to find μ independent of $c \geq 0$ such that

$$
I:=C_{X} g_{\min }^{2} \int\left|\frac{f}{g}-c\right|^{2} d x+\frac{1}{2}\left\|f^{2}-g^{2}\right\|_{b}^{2} \geq \mu\left\|\frac{f}{g}-1\right\|_{L^{2}}^{2} .
$$

- find ϵ so that

$$
I \geq \frac{1}{2} C_{X} g_{\min }^{2}\|f / g-c\|^{2}+\epsilon\left(c^{2}-1\right)^{2}\|g\|_{b}^{2}
$$

- For any $\eta>0$

$$
\int\left|\frac{f}{g}-c\right|^{2} d x \geq \eta \int\left|\frac{f}{g}-1\right|^{2} d x-\frac{\eta|X|}{1-\eta}|c-1|^{2}
$$

- Together

$$
I \geq \frac{\eta}{2} C_{X} g_{\min }^{2} \int\left|\frac{f}{g}-1\right|^{2} d x+|c-1|^{2}\left(\epsilon(c+1)^{2}\|g\|_{b}^{2}-\frac{\eta|X|}{1-\eta}\right)
$$

Conclusion II

- The self-contained population models with three simple ingredients:
- growth and death: trait dependent
- limited resources: selection through competition
- mutations is able to express selection and branching.
- Open questions
- Does the entropy method hold in the case with mutation?
- For the new model, how to characterize a more explicitly that generate positive concentrations
- Whether similar results hold true for corresponding discrete models.

THANK YOU ALL

